分数除以整数教案

时间:2025-05-27 10:37:03
分数除以整数教案

分数除以整数教案

作为一名辛苦耕耘的教育工作者,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。写教案需要注意哪些格式呢?下面是小编为大家整理的分数除以整数教案,欢迎大家借鉴与参考,希望对大家有所帮助。

分数除以整数教案1

教学目标:

1、在解决具体问题的过程中,借助直观图示,理解分数除法的意义,探索分数除以整数除法的计算方法,并能正确进行计算。

2、经历探索分数除以整数计算方法的过程,初步形成独立思考和探索的意识。

3、让学生感受成功的体验。

教学重点、难点:

分数除以整数的计算方法

教具、学具准备:

多媒体、课件

教学过程:

一、教学意义

师:今天来了几位听课的老师,你想怎样在这节课上表现自己?

学生交流。

师:嗯,老师期待你们精彩的表现,不过,不要太紧张,这节课我们只是来帮小猴子解决一些问题,不是很难,不信,你瞧!

出示问题:

(1)每只猴子吃半个桃子,四只猴子一共吃几个桃子?

(2)两个桃子,平均分给四只猴子,每只猴子分多少个?

(3)两个桃子,分给每只猴子半个,可以分给多少只猴子?

学生解决

师:观察这三个算式,想一想,分数除法的意义是怎样的呢?

总结出示:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。

同位互说。

二、探究方法 ,解决问题

1、提出问题,板书课题

师:通过解决小猴子吃桃子的问题,同学们掌握了分数除法的意义,接下来我们看看小猴子又要干什么。

出示课件:

师:根据这条信息,你能帮助小猴子解决怎样的数学问题?

出示问题:1)做一件背心需要花布多少米?

2)做一件裤子需要花布多少米?

师:对于问题1),该怎样列式呢?

学生列式(为什么这样列式?)

师:观察算式,它有什么特点?

师板书课题。

2、探究方法,汇报交流

师:这个算式该如何算呢?

学生以小组为单位讨论交流。

师巡视指导。

小组汇报

① 折纸或画图的方式(学生说一说)

② 9/10÷3=(9÷3)/10=3/10

师(板书):你是怎么想的?

③ 9/10÷3=0.9÷3=0.3

④ 9/10÷3=9/10×1/3

师(板书):你是怎么想的?

学生说自己的想法(引导学生说:把9/10米平均分成3份,是求9/10的三分之一是多少,所以可以把9/10÷3转化为9/10×1/3。)

师:同学们真棒,探究出这么多方法,你认为哪种方法好呢?

初步优化。

3、师:对于问题2),你能自己解决吗?

学生独立解决。全班交流,订正。

进一步优化方法。

师:看来你们已经初步掌握了计算的方法,那我们试一试计算这两个题?

出示试一试:6/7÷5

5/11÷4

师:现在你认为哪种方法好呢?

4、观察对比,总结方法

师:观察刚才我们的计算过程,谁愿意来总结一下计算方法呢?

学生交流,总结方法,并明白各种方法的局限性及普遍性。

师(出师课件)小结:同位之间互相说一说。

师:还有什么特别注意的吗?强调0除外以及红颜色字眼。

(为了检验你是否真正掌握了方法,老师要考考你)

出示考考你:

4/5÷4=4/5×() 2/3÷6=2/3○() 2/5÷2=()×()

三、反馈练习,巩固提高

师:同学们已经学习了分数除以整数的计算方法,那下面就到了考验大家的时刻了,有信心接受挑战吗?

课件出示:

1、争先恐后 连一连

5/9÷5 7/8÷6 1/10÷9

7/8 ×1/6 1/10×1/9 5/9×1/5

2、大显身手 算一算

10/11÷2 8/9÷8 28/19÷7 15/22÷5

3/2÷2 7/17÷4 2/9÷4 21/25÷14

3、火眼金睛 判一判

(1)2/5÷7=2/5×1/7=2/35 ()

(2)1/2÷3=1/2÷1/3=1/6 ()

(3)3/8÷3=3/8×3=8 ()

(4)3/9÷3=(3÷3)/(9÷3)=1/3 ()

4、解决问题

四、总结交流

师:今天跟大家共同学习,老师非常高兴!你的心情如何呢?你有什么收获呢?

学生交流。

分数除以整数教案2

主备人:黎梅芳 复备人: 领导签字:

班级: 小组: 姓名: 教师评价:

1、分数除以整数(P43-44)

【学习目标】

1、我能掌握分数除法的计算方法,能正确计算分数除以整数。

2、提高合作交流的能力,感受学习的快乐。

【重点难点】

掌握分数除以整数的计算方法。

一 知识链接

1、 口算练习

× = ××× =

3、根据算式30×25=750写出两道除法算式

二、我会探究

1、自助学习43页例1

(1升果汁,平均分给2个小朋友喝,怎样列式

(2)在课本的图中分一分再算出结果

你是怎样算的:

(3÷2等不等于×2

1 是2的 数 2454545451231015547109823

2升果汁平均分给3个小朋友喝,每人喝多少升

列式

3、总结:分数除以整数可以怎样算?

三、我能达标 课本44页练一练1、2、3

四、扩展提升

918÷3÷3= ÷6÷2÷3= 85

五、总结全课

通过学习我明白了

我的满意度

小组的满意度

分数除以整数教案3

教学目标

1.使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的试题。

2.使学生在探索整数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

3.进一 ……此处隐藏7388个字……法的统一计算法则应该是怎样的?

甲数除以乙数(0除外),等于甲数乘以乙数的倒数。得出:

三、巩固练习。

1.课本做一做。

2.练习九第5、8、10题。

四、作业。

练习九第6、7、9题。

分数除以整数教案11

分数除法一(分数除以整数)

教学目标和要求

1, 在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2, 探索并掌握分数除以整数的计算方法,并能正确计算。

3, 能够运用分数除以整数解决简单的实际问题。

教学重点

分数除以整数的计算方法。

教学难点

分数除以整数的计算方法

教学准备

教学时数

1课时

教学过程

一, 涂一涂,算一算

1, 把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

2, 把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

(1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。

(2)鼓励学生探索第2题,联系分数乘法的意义,说明把4/7平均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的倒数。

二, 填一填,想一想

1, 变换探索的角度,呈现三组算式,让学生实际运用,再次验证一个分数除以整数的意义和算理。2

2, 师导学生根据前面的三个活动,总结算法。3,

3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。

三, 试一试

练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。

四, 练一练

1,第26页第2,3题,让学生独立解决。

教学内容(课题)

分数除以整数教案12

教学目标

1.通过例2的学习,学生能够理解整数除以分数计算法则的推导过程,引导学生正确地总结出计算法则。

2.能运用法则正确地进行计算。

3.培养学生观察、比较、分析的能力和语言表达能力,培养学生善于抓住事物本质的能力和思维方式。

教学重点

整数除以分数计算法则的推导过程。

教学难点

如何区别、统一分数除以整数、整数除以分数两个计算法则。

教学过程设计

(一)复习旧知

1.说出下面各题的倒数。(投影出示)

2.把算式补充完整。(投影出示)

问:分数除以整数的法则是什么?谁不变?谁变?

生:被除数不变,除号变乘号,除数变成它的倒数。(法则的本质)

问:分数除以整数是把谁变成它的倒数了?为什么?

生:把整数变成它的倒数了,因为整数处在除数的位置。

师:我们上节课学习了分数除以整数的计算法则。这节课我们来学习整数除以分数的计算法则。看谁最善于思考、分析,能正确的总结出计算法则。(板书:整数除以分数)

(二)新授教学

1.一辆汽车2小时行驶90千米。1小时行驶多少千米?

问:①谁会列式计算?

板书: 02=45(千米)

②根据什么这样列式?

生:根据路程时间=速度。

问:要求1小时行驶多少千米就是求什么?

生:求汽车的速度。

问:怎样列式?为什么这样列式?

怎样进行计算呢?我们认真分析一下题意。画出线段图帮助我们寻找解题的方法。

师:根据你们说的老师画图。用一条线段的长表示1小时,把它平

问:怎么求?为什么这样求?

(2)要求1小时行多少千米,怎么求?

算式变化形式:

根据上面的推导过程可得出:

这两个算式相等吗?

我们把这道题完成。

答:汽车1小时行驶45千米。

(3)观察算式:谁没变?谁变了?怎么变的?

讨论:整数除以分数的计算法则是什么?

谁能说一说?

板书:整数除以分数等于整数乘以这个分数的倒数。

同桌互相说一说。

谁愿意给大家说一说?

(4)根据我们总结出的法则,同学们试做下面两道题,看谁做得又对又快。

订正,错的说错在哪里,并改正过程。

(三)巩固练习

1.投影出示。

(1)分数除以整数(0除外)等于分数乘以整数的倒数。

(2)整数除以分数,等于整数乘以分数的倒数。

问:第一个法则整数后面为什么要加上0除外而第二个整数后面就不加了呢?

生:第一个法则整数是处在除数的位置,除数不能为0,所以必须加上0除外;第二个法则中整数处在被除数的位置,可以是0,因此不必加上0除外了。

问:你看这两个法则一会儿变成乘以这个整数的倒数,一会儿变成乘以这个分数的倒数,把我们都弄糊涂了。你有什么办法记清这两个计算法则吗?请把你的好方法讲给你周围的同学听。看谁的方法最好。

问:这两个法则的共同之处在哪儿?谁愿意把你的方法讲给全班同学听?

生:这两个计算法则虽然叙述的不一样,但它们都是被除数不变,除号变乘号,除数变成它的倒数。这样记就不会记错了。

2.把下面各题补充完整。

3.计算。在本上写过程,得数填在书上。

订正,指名把过程写在投影片上。

错的同学说明错因。

4.判断。对的举,错的举,并说明理由。

师:同学们的思维非常敏捷,语言表达能力也很强。同学们对每一道题都是认真观察、思考,这样我们就能避免出现很多不该出的错误。

(四)课堂总结

这节课我们学习了什么内容?整数除以分数的计算法则是什么?还有什么问题?

(五)作业

课本第36页第1,3,4题。

课堂教学设计说明

本节课的内容是整数除以分数的计算法则。这节课有两个难点:

第一是理解整数除以分数的计算法则的推导过程。为了突破这一难点,采用了把例2的条件和问题分别解剖加以分析的方法,引导学生根助学生理解算理,效果很好。

第二是分数除以整数,整数除以分数的计算法则的应用。这一部分内容学生容易产生混乱。为了突破这一难点,教师要调动学生的思维,激发他们的兴趣,使学生抓住了一不变二变这一本质。在练习中教师设计了一组对比练习。加深学生对法则的理解。

《分数除以整数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式